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It is shown that the heat flow in a single homogeneous medium of thermal conductivity ¢(T), between
boundaries at temperatures Tz and T is the same as that for the same geometry in a medium of unit thermal
conductivity and boundary “thermal potentials” Z(T») and = (Th), where Z(T)=/"7 o(T")dT’. Some
applications are given, as well as a short table of (T’ for common cryogenic temperatures and materials.

T is the purpose of this note to present a theorem?!
which is quite useful in the design of cryogenic appa-
ratus and may also have other applications. One often
has the problem of calculating the flow of heat, say
down an inconel tube which joins a copper can at 78°K
to one at 4°K. The thermal conductivity of inconel is,
however, a strong function of temperature in this range
and it is not at first clear what average conductivity to
take, or how this average depends upon the geometry.
We give here a simple proof of a theorem which shows
that, not only in this one-dimensional case but also in
the general three-dimensional case of a medium with
boundaries at two temperatures, the total heat transfer
may be computed as if the medium had a conductivity
which is just a linear average of the temperature-varying
conductivity over the temperature interval. In particu-
lar we shall prove the
Theorem: for a homogeneous medium with heat con-
ductivity o=¢(T) the heat flow between two boundaries
of the medium maintained at temperatures 7'; and Tz is

H=F(G)(T:—Ty)e=F(G)[Z(T)—2(T)], (1)
where

H(TAT) =2(T2)-E(T1)

1
Z—Tl

(T)= f (THdT, (2)

and F(G) signifies a function of geometry only, having
the dimensions of length.? This means that the heat-flow
problem is not essentially changed by the introduction
of the varying conductivity and that for calculations
between two given temperatures the problem reduces to
finding the average conductivity between these two
temperatures.

1 The theorem is apparently due to Kirchoff, but does not appear
in standard works in heat transmission and is evidently almost
unknown to both physicists and mechanical engineers. In the past,
considerable unnecessary effort has been expended on numerical
work, which can be eliminated by the use of the theorem and a
table of thermal potentials =(T). The same theorem is proved by
H. G. Elrod, Jr., Trans. Am. Soc. Mech. Engrs. 70, 905 (1948), but
it appears still unknown to cryogenicists.

2 As remarked by P. ]. Price, the theorem is true also for tensor
conductivity, the magnitude of which is a function of temperature.

Let us consider the problem of calculating the magni-
tude of the heat flow in a poor conductor, with bound-
aries at greatly differing temperatures (T and T, say).
Figure 1(a) shows the case in which the conductivity o
is independent of temperature; Fig. 1(b) shows a
cylindrical conductor with varying conductivity o(7);
Fig. 1(c) a variable-area, variable-conductivity con-
ductor; and Fig. 1(d) is Fig. 1(c) with T, and T,
interchanged. Intuitively by application of first-order
perturbation theory one might think that, if o(T") were
small for T near T, and large for T near T, then the
heat flow in Fig. 1(c) would be greater than that for
Fig. 1(d). It will be shown, however, that the heat flows
in Figs. 1(c) and 1(d) are the same. It will be shown also
that the heat transfer between the boundaries at T's and
Ty for o(T) of the form of Fig. 2(a) is very much larger
than that for Fig. 2(b), which latter is about the same
as that for Fig. 2(c), perhaps contrary to expectation.

To determine the heat flow we must solve the diffusion
equation for the steady state,

V-[o(T)VT]=0. (3)
The heat current h is given by
h=¢(T)VT. 4)
T2
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Fic. 1. Heat flow H for various geometries and conductivities
a(T). Isotherms are sketched (dotted) for equal temperature
intervals.

In(a), Ha= (T2~ T2 ;

af _ Hy _H
In(?), @_—HT_)’ 'T(T)dT—Zdy
A fTs
H°=2-/;, o(T)dT;
In(c), H.=7;

In(d), Ha=".
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CALCULATION OF HEAT FLOW
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Fi6. 2. Some possible thermal conductivities ¢(7). The zero

conductivity region in “b” has little influence on the heat flow
between T2 and T'.

Let us define a function

T
2(T)=f a(Tar, (5)
0
which may be called the “thermal potential.”” Now
az(T)
VE(T)=—d:Z'1—‘VT=U(T)VT=h. (6)

The gradient of Z(7T) is therefore the heat current h, the
divergence of which is zero, so that = is required to
satisfy the Laplace equation. No matter what the form
of ¢{T), the isothermals retain the same shape, and
along an isothermal o(7) is constant; so the ‘“‘iso-
thermals” of Z(T") coincide with those of T itself.

V2 (T)=0. (7

Evidently (T) may be regarded as the “temperature,”
in the sense that we may substitute the problem of the
same geometry G with boundaries at “temperature”
2(T3) and Z(T,). Since the gradient of X itself is the
heat flow, the thermal conductivity in this new problem
must be regarded as unity. Therefare, the total flow of
heat between the boundaries at temperature Ty and
temperature T is given by

(@) H=[Z(TH—Z(THIF(G),

Te T1
(b) =F(G)[ f o(T)dT' — f a(T’)dT’],

T2

e(TdT',

8
(0 =F@G)

(d)  =F(G)(To—T1)5(TxTy),

so that two situations which differ from one another only
in conductivities ¢(7T") will have relative heat transfers
proportional to the respective values of & in the two
cases.

No such theorem will hold, of course, if the isothermals
are distorted under o—¢(7) such as in a composite
medium where o=¢(T',r). On the other hand, a combi-
nation of a homogeneous medium with some perfectly-
conducting or perfectly-insulating regions presents no
difficulty. Thus we have established the theorem.
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Some corollaries of the theorem appear:

(I) Under the conditions assumed (¢ a function of
temperature only, the diffusion equation valid for heat
flow by virtue of the phonon mean free path being small
compared to dimensions of the problem), the heat
transfer between two boundaries cannot decrease with
decrease in temperature of the cold boundary, nor with
increase in temperature of the hot. Thus, evenifo(7)=0
for 0<T<4°K and o(T)=(T—4°) for T>4°K, the
heat flow from 78°K to 1°K cannot be less than the heat
flow from 78° to 4°. In fact, in this case the heat flow is
unchanged no matter what the colder boundary temper-
ature is below 4°K. Thus a small region of low con-
ductivity in the curve of ¢ vs T is not important in
designing cryogenic apparatus, while a small range of T
in which ¢(T') is very large would mean a very large heat
influx since the thermal potential is the area under the
a(T) curve.

(IT) Accordingly, we need only a table of values of
Z(D)=S" o(T")dT' to calculate the flow of heat be-
tween two boundaries in any homogeneous medium. An
example is presented below as Table I. One must be

TasLE 1. Thermal potentials Z(T').2

%K
Material

4.2°K 78°K 300°K
Constantan 16 9.9X10% 5.6X10¢
Inconel (drawn) 54 3.8X108 3.3x10¢
Stainless steel (347) 4.7 3.3X108 3.0X10¢
Copper (W-2, Fig. 11) 44X 104 1.7X108  27X108

¢ Thermal conductivities taken from NBS Circular 556, (1954). Large
variations from sample to sample must be expected. Z(7T) in units of 1073
watts/cm.,

sure, of course, in applying the theorem that radiation
or conduction from the “free’” boundaries is negligible.
With these precautions, the theorem is of considerable
use in heat flow computations.

(III) Although heat flow in a single medium with
o(T) is not a linear phenomenon, it is reversible in that
an interchange of boundary temperatures leads to the
same heat flux. This statement definitely does not hold
where ¢ is a function of position for fixed temperature
since the differential Eq. (3) then does not separate.

As an example of the value of the theorem we calcu-
late now the heat flow for Fig. 1(¢) it is given by

Ly L, Ards
H(_+~) =43, H=(3(T)-Z(T)}——
Al Ag A1L2+A 2L1

The identical value is obtained for Fig. 1(d).

As an example of a case with ¢ a rapidly varying
function of T', we may take the transfer of heat by
radiation in the interior of a star in which local near
equality of radiation and matter temperatures exist.
Here we have

V-IAD)V(TH]=0, (14)

where X is the Rosseland mean free path. The heat flux is
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now haAV(7%). If the question is put whether a star of
uniform matter distribution, but with an opacity which
is an arbitrary (positive) function of temperature, can
insulate itself by keeping its surface cool, or whether the

heat transfer must increase with decreasing surface

temperature; the answer is evidently that the latter is
true, since all contributions to the integral of Eq. 8(c)
are positive. (Here ¢(T)=4T3A(T).) Therefore even if
heat transfer is locally by radiation, the theorem holds
and the heat flow can only increase as the boundary
temperature decreases.

On the other hand it is entirely possible for heat
transfer in general to decrease with decrease in temper-
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ature of the cold boundary. A familiar example is a well-
silvered dewar, in which because of the increased con-
ductivity and reflectivity of silver at low temperature,
the heat absorbed from a surface at 300°K by a silver
wall at 4°K may be only one-half of the heat absorbed
by a wall at 78°K. This appears to violate the theorem
proved in the foregoing, since the heat flow decreases
with increasing temperature span, but there is in this
case no local equilibrium, the heat transfer is not
governed by Fourier’s equation, and the situation is not
to be described as above. As in all cases one must clearly
separate the validity of the theorem from the pertinence
of the assumptions.
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A direct method of measuring the injection ratio of rectifying contacts is described. With this method,
the injection ratio is determined by comparing the area of a current injection pulse with the area of the
resulting hole storage pulse as observed on an oscilloscope screen.

I. INTRODUCTION

HE purpose of this paper is to report a direct
method of measuring the injection ratio! of a
rectifying barrier, which requires no auxiliary contacts.
Previous methods for determining the injection ratio
either require auxiliary contacts for a direct measure-
ment,? or are indirect.?® The method entails comparing
the areas of two pulses as observed on an oscilloscope.
These areas give the time integrals of a current injection
pulse and the resulting hole-storage pulse.

The term ‘‘hole storage” was originated by Michaels
and Meacham.® It refers to the holes, injected in #-type
material by an emitting contact, which are swept back
to the emitter by reverse bias, and thereby produce a
hole-storage pulse. Studies of the hole-storage effect
have been concentrated on two different groups of ex-
periments conducted for the most part on diffused
junctions (for which ¥=1). One group of experiments
considers the reverse recovery current after a pulse of

* Work supported by U. S. Signal Corps contract.

t Now with Oak Ridge National Laboratory, Oak Ridge,
Tennessee.

1 Now with Motorola Inc., Phoenix, Arizona.

1The injection ratio is defined as the fraction of the dc current
carried by minority carriers, and is denoted herein by the symbol v.
This discussion refers to n-type material. Thus the minority
carriers are holes.

( 2 Shockley, Pearson, and Haynes, Bell System Tech. J. 28, 344
1949).

3 A. Many, Proc. Phys. Soc. (London) B67, 9 (1954).

+R. Bray, Phys. Rev. 100, 1047 (1955).

5G. G. E. Low, Proc. Phys Soc. B68, 447 (1955).

sS. E. Michaels and L. A. Meacham, Phys. Rev. 78, 175
(1950).

forward current,” ! and the other considers the open
circuit voltage after a pulse of forward current.*=¥7 The
area of the hole storage pulse [area A, Fig. 1(b)]
shrinks because of hole-electron recombination. We
found that it was necessary to apply a fixed reverse bias
[Fig. 1(a)] in order to minimize this shrinkage, and a
bias of a few tenths of a volt was found to be suitable.
(There is a hole-storage pulse without applied bias be-
cause of the post-injection emf.”?) Values of injection
ratio in the range 0.2 <y <1.0 were measured.

II. ANALYSIS AND DISCUSSION

By applying an input pulse [ Fig. 1(a)] with sufficient
amplitude compared with the reverse bias, the diode is
able to draw forward current and holes are injected into
the semi-conducting region nearby. After the pulse the
electrons which have entered the metal cannot return to
the semiconductor because they encounter the metal-
semiconductor barrier. We assume, following Swanson,’8
that the electronic barrier from metal to semiconductor

7E. M. Pell, Phys. Rev. 90, 278 (1953).

(1;512)G Shulman and M. E. McMahon, J. Appl. Phys. 24, 1267
3

¢ M. C. Waltz, Proc. Inst. Radio Engrs. 40 1483 (1952).

VE. L. Steele, J. Appl. Phys. 25, 916 (195

1B, Lax and S. F. Neustadter, J Appl. Phys 25, 1148 (1954).

12 B, R. Gossick, Phys. Rev. 91, 1012 (1953).

135, R. Lederhandler and L. J. Giacoletto, Proc. Inst. Radio
Engrs. 43, 477 (1955).

4 B. R. Gossick, J. Appl. Phys. 26, 1356 (1955).

16 B, R. Gossick, Proc. Natl. Electronics Conf. 11, 602 (1955).

16 H, L. Armstrong, J. Appl. Phys. 27, 420 (1956).

17 B, R. Gossick, J. Appl. Phys. 27 905 (1956).
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